Evaluation of the commercial biocides effects in antifouling paints on marine organisms

Document Type : Original Article

Author

Department of Resins and Additives, Faculty of Surface Coating and Novel Technologies, Institute for Color Science and Technology, Tehran, Iran.

10.22091/ethc.2024.10591.1023

Abstract

Objective: In the marine environment, biofouling phenomenon is referred to as the undesired colonization of marine organisms on anthropogenic surfaces that are immersed into the seawater. To deter the unwanted biofouling, it is common to coat the immersed surfaces with a layer of antifouling paint, which will release antifouling biocide in a controlled manner to form a protective film against nearby biofoulers. The purpose of this study is to review the studies done in this field, especially in the direction of sustainable environmental protection and marine organisms.
Methods: The research method included searching for articles in Google Scholar using antifouling, biocides and related keywords.
Results: The results showed that all biocides used in commercial antifouling paints detrimental the environment and non-target marine organisms.
Conclusion: In general, by knowing the fate and pollution caused by biocides in the marine environment, appropriate measures can be taken to protect marine natural resources. It is hoped that in the near future, foul-release coatings will replace today's coatings and paints as biocide-free and environmentally safe coatings.

Keywords

Main Subjects


ACTION, I. (2020). World Fisheries and Aquaculture.
Ali, H. R., Ariffin, M. M., Omar, T. F. T., Ghazali, A., Sheikh, M. A., Shazili, N. A. M., & Bachok, Z. (2021). Antifouling paint biocides (Irgarol 1051 and diuron) in the selected ports of Peninsular Malaysia: occurrence, seasonal variation, and ecological risk assessment. Environmental Science and Pollution Research, 28(37), 52247-52257. https://doi.org/10.1007/s11356-021-14424-1
Anderson, C. (2009). Fouling control coatings using low surface energy, foul release technology. In Advances in marine antifouling coatings and technologies (pp. 693-708). Elsevier. https://doi.org/10.1533/9781845696313.4.693
Anderson, C., Atlar, M., Callow, M., Candries, M., Milne, A., & Townsin, R. (2003). The development of foul-release coatings for seagoing vessels. In Proceedings of the Institute of Marine Engineering, Science and Technology. Part B, Journal of Marine Design and Operations (Vol. 2003, No. B4, pp. 11-23).
Ara, J., Jewel, A., Hossain, A., & Ayenuddin, M. (2020). Determination of suitable species for cage fish farming in Chalan beel, Bangladesh. International Journal of Fisheries and Aquatic Studies, 8(2), 315-320.
Bannister, J., Sievers, M., Bush, F., & Bloecher, N. (2019). Biofouling in marine aquaculture: a review of recent research and developments. Biofouling, 35(6), 631-648. https://doi.org/10.1080/08927014.2019.1640214
Bellas, J. (2007). Toxicity of the booster biocide Sea-Nine to the early developmental stages of the sea urchin Paracentrotus lividus. Aquatic Toxicology, 83(1), 52-61. https://doi.org/10.1016/j.aquatox.2007.03.011
Callow, J. A., & Callow, M. E. (2011). Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature Communications, 2(1), 1-10. https://doi.org/10.1038/ncomms1251
Chen, L., Zhang, W., Ye, R., Hu, C., Wang, Q., Seemann, F., Au, D. W., Zhou, B., Giesy, J. P., & Qian, P.-Y. (2016). Chronic exposure of marine medaka (Oryzias melastigma) to 4, 5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) reveals its mechanism of action in endocrine disruption via the hypothalamus-pituitary-gonadal-liver (HPGL) axis. Environmental Science & Technology, 50(8), 4492-4501. https://doi.org/10.1021/acs.est.6b01137
da Silveira Guerreiro, A., Rola, R. C., Rovani, M. T., da Costa, S. R., & Sandrini, J. Z. (2017). Antifouling biocides: impairment of bivalve immune system by chlorothalonil. Aquatic Toxicology, 189, 194-199. https://doi.org/10.1016/j.aquatox.2017.06.012
De Nys, R., & Guenther, J. (2009). The impact and control of biofouling in marine finfish aquaculture. In Advances in marine antifouling coatings and technologies (pp. 177-221). Elsevier. https://doi.org/10.1533/9781845696313.1.177
Duan, Y., Wu, J., Qi, W., & Su, R. (2022). Eco-friendly marine antifouling coating consisting of cellulose nanocrystals with bioinspired micromorphology. Carbohydrate Polymers, 120504. https://doi.org/10.1016/j.carbpol.2022.120504
Eslami, B., Irajizad, P., Jafari, P., Nazari, M., Masoudi, A., Kashyap, V., Stafslien, S., & Ghasemi, H. (2019). Stress-localized durable anti-biofouling surfaces. Soft Matter, 15(29), 6014-6026. https://doi.org/10.1039/C9SM00790C
Fitridge, I., Dempster, T., Guenther, J., & De Nys, R. (2012). The impact and control of biofouling in marine aquaculture: a review. Biofouling, 28(7), 649-669. https://doi.org/10.1080/08927014.2012.700478
Gittens, J. E., Smith, T. J., Suleiman, R., & Akid, R. (2013). Current and emerging environmentally-friendly systems for fouling control in the marine environment. Biotechnology Advances, 31(8), 1738-1753. https://doi.org/10.1016/j.biotechadv.2013.09.002
Guardiola, F. A., Cuesta, A., Meseguer, J., & Esteban, M. A. (2012). Risks of using antifouling biocides in aquaculture. International Journal of Molecular Sciences, 13(2), 1541-1560. https://doi.org/10.3390/ijms13021541
Harino, H. (2004). Occurrence and degradation of representative TBT free-antifouling biocides in aquatic environment. Coastal Marine Science, 29(1), 28-39.
IMO, I. (2001). International convention on the control of harmful anti-fouling systems on ships. International Maritime Organisation (IMO).
Jacobson, A. H., & Willingham, G. L. (2000). Sea-nine antifoulant: an environmentally acceptable alternative to organotin antifoulants. Science of the Total Environment, 258(1-2), 103-110. https://doi.org/10.1016/S0048-9697(00)00511-8
Kiil, S., Weinell, C. E., Pedersen, M. S., & Dam-Johansen, K. (2001). Analysis of self-polishing antifouling paints using rotary experiments and mathematical modeling. Industrial & Engineering Chemistry Research, 40(18), 3906-3920. https://doi.org/10.1021/ie010242n
Konstantinou, I., & Albanis, T. (2004). Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environment International, 30(2), 235-248. https://doi.org/10.1016/S0160-4120(03)00176-4
Lee, S., Saravanan, M., Kim, S.-A., & Rhee, J.-S. (2022). Long-term exposure to antifouling biocide chlorothalonil modulates immunity and biochemical and antioxidant parameters in the blood of olive flounder. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 257, 109337. https://doi.org/10.1016/j.cbpc.2022.109337
Martins, S. E., & Martins, C. D. M. G. (2021). Antifoulants and disinfectants. In Aquaculture Toxicology (pp. 25-58). Elsevier. https://doi.org/10.1016/B978-0-12-821337-7.00005-0
Moon, Y.-S., Kim, M., Hong, C. P., Kang, J.-H., & Jung, J.-H. (2019). Overlapping and unique toxic effects of three alternative antifouling biocides (Diuron, Irgarol 1051®, Sea-Nine 211®) on non-target marine fish. Ecotoxicology and Environmental Safety, 180, 23-32. https://doi.org/10.1016/j.ecoenv.2019.04.070
Orzechowska, A., Czaderna-Lekka, A., Trtílek, M., & Rusiniak, P. (2023). Fluorescence analysis of biocide efficiency in antifouling coatings against cyanobacteria. International Journal of Molecular Sciences, 24(5), 4972. https://doi.org/10.3390/ijms24054972
Paz-Villarraga, C. A., Castro, Í. B., & Fillmann, G. (2022). Biocides in antifouling paint formulations currently registered for use. Environmental Science and Pollution Research, 1-12. https://doi.org/10.1007/s11356-021-17662-5
Pistone, A., Scolaro, C., & Visco, A. (2021). Mechanical properties of protective coatings against marine fouling: A review. Polymers, 13(2), 173. https://doi.org/10.3390/polym13020173
Qian, P.-Y., Chen, L., & Xu, Y. (2013). Mini-review: Molecular mechanisms of antifouling compounds. Biofouling, 29(4), 381-400. https://doi.org/10.1080/08927014.2013.776546
Readman, J. W. (2006). Development, occurrence and regulationof antifouling paint biocides: historical review and future trends. Antifouling Paint Biocides, 1-15. https://doi.org/10.1007/698_5_047
Sánchez-Rodríguez, Á., Sosa-Ferrera, Z., Santana-del Pino, Á., & Santana-Rodríguez, J. J. (2011). Probabilistic risk assessment of common booster biocides in surface waters of the harbours of Gran Canaria (Spain). Marine Pollution Bulletin, 62(5), 985-991. https://doi.org/10.1016/j.marpolbul.2011.02.038
Sankar, G. G., Sathya, S., Murthy, P. S., Das, A., Pandiyan, R., Venugopalan, V., & Doble, M. (2015). Polydimethyl siloxane nanocomposites: their antifouling efficacy in vitro and in marine conditions. International Biodeterioration & Biodegradation, 104, 307-314. https://doi.org/10.1016/j.ibiod.2015.05.022
Singh, D., Rehman, N., & Pandey, A. (2023). Nanotechnology: the Alternative and Efficient Solution to Biofouling in the Aquaculture Industry. Applied Biochemistry and Biotechnology, 1-16. https://doi.org/10.1007/s12010-022-04274-z
Tuteja, A., Choi, W., Ma, M., Mabry, J. M., Mazzella, S. A., Rutledge, G. C., McKinley, G. H., & Cohen, R. E. (2007). Designing superoleophobic surfaces. Science, 318(5856), 1618-1622. 10.1126/science.1148326
Vaz, C., Afonso, F., Barata, M., Ribeiro, L., Pousão-Ferreira, P., & Soares, F. (2019). Effect of copper exposure and recovery period in reared Diplodus sargus. Ecotoxicology, 28(9), 1075-1084. https://doi.org/10.1007/s10646-019-02109-y
Wittmer, I. K., Scheidegger, R., Bader, H.-P., Singer, H., & Stamm, C. (2011). Loss rates of urban biocides can exceed those of agricultural pesticides. Science of the Total Environment, 409(5), 920-932. https://doi.org/10.1016/j.scitotenv.2010.11.031
Yang, W. J., Neoh, K.-G., Kang, E.-T., Teo, S. L.-M., & Rittschof, D. (2014). Polymer brush coatings for combating marine biofouling. Progress in Polymer Science, 39(5), 1017-1042. https://doi.org/10.1016/j.progpolymsci.2014.02.002
Yebra, D. M., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 50(2), 75-104. https://doi.org/10.1016/j.porgcoat.2003.06.001
Yebra, D. M., Kiil, S., Weinell, C. E., & Dam-Johansen, K. (2006). Effects of marine microbial biofilms on the biocide release rate from antifouling paints—A model-based analysis. Progress in Organic Coatings, 57(1), 56-66. https://doi.org/10.1016/j.porgcoat.2006.06.003
Yilgör, E., & Yilgör, I. (2014). Silicone containing copolymers: Synthesis, properties and applications. Progress in Polymer Science, 39(6), 1165-1195. https://doi.org/10.1016/j.progpolymsci.2013.11.003
Yun, Y.-J., Kim, S.-A., Kim, J., & Rhee, J.-S. (2023). Acute and Chronic Effects of the Antifouling Booster Biocide Diuron on the Harpacticoid Copepod Tigriopus japonicus Revealed through Multi-Biomarker Determination. Journal of Marine Science and Engineering, 11(10), 1861. https://doi.org/10.3390/jmse11101861