Sea Surface Temperature in the Persian Gulf and Its Association with Gene and Protein Interactions in Coral Reefs towards Preserving the Ecosystem

Document Type : Original Article

Authors

1 Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.

2 Department of Marine and Atmospheric Science, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.

3 Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran

4 Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.

10.22091/ethc.2024.10585.1020

Abstract

Objective: Coral reefs are one of the most important and diverse marine ecosystems that provide many benefits to humans. The increase in the sea surface temperature (SST), leads to their biology disruption and bleaching. In the present study, the relationship between the increase in SST due to climate change and the interactions between genes and proteins has been investigated. The results can give us a perspective on the extent of the vulnerability of corals to stress and the adoption of methods to protect them.
Methods: Data on SST anomalies in the Persian Gulf was obtained using satellite data. The metabolic pathway of sod and cat genes in oxidative stress, and hsp90 gene in heat shock pathways were obtained by KEGG. Gene and protein interactions were obtained through GeneMANIA and STRING databases respectively.
Results: SST analyzes showed that there are temperature fluctuations in the Persian Gulf from the lowest temperature, about 16 °C to about 35 °C in Khark Island. Therefore, the coral reefs of the Persian Gulf tolerate very high temperatures. During thermal stress, the coral host responds to oxidative stress by regulating the expression of antioxidant genes, including sod and cat, to protect the coral-algae symbiosis. In addition, the expression of hsp90 indicates its role in protecting proteins from heat damage.
Conclusion: Understanding the relationship between SST and the molecular health status of coral reefs is essential to develop conservation strategies to protect these marine ecosystems in the face of climate change.

Keywords


Almazroui, M., Islam, M. N., Jones, P. D., Athar, H., & Rahman, M. A. (2012). Recent climate change in the Arabian Peninsula: seasonal rainfall and temperature climatology of Saudi Arabia for 1979–2009. Atmospheric Research, 111, 29-45. https://doi.org/10.1016/j.atmosres.2012.02.013
Al-Rashidi, T. B., El-Gamily, H. I., Amos, C. L., & Rakha, K. A. (2009). Sea surface temperature trends in Kuwait bay, Arabian Gulf. Natural Hazards, 50, 73-82. https://doi.org/10.1007/s11069-008-9320-9
Barshis, D. J., Ladner, J. T., Oliver, T. A., Seneca, F. O., Traylor-Knowles, N., & Palumbi, S. R. (2013). Genomic basis for coral resilience to climate change. Proceedings of the National Academy of Sciences, 110(4), 1387-1392. https://doi.org/10.1073/pnas.1210224110
Bauman, A. G., Baird, A. H., & Cavalcante, G. H. (2011). Coral reproduction in the world’s warmest reefs: southern Persian Gulf (Dubai, United Arab Emirates). Coral Reefs, 30, 405-413. https://doi.org/10.1007/s00338-010-0711-5
Burt, J. A., Paparella, F., Al-Mansoori, N., Al-Mansoori, A., & Al-Jailani, H. (2019). Causes and consequences of the 2017 coral bleaching event in the southern Persian/Arabian Gulf. Coral Reefs, 38, 567-589. https://doi.org/10.1007/s00338-019-01767-y
Cai, X., Sun, H., Yan, B., Bai, H., Zhou, X., Shen, P., & Jiang, C. (2023). Salt stress perception and metabolic regulation network analysis of a marine probiotic Meyerozyma guilliermondii GXDK6. Frontiers in Microbiology, 14, 1193352. https://doi.org/10.3389/fmicb.2023.1193352
Cinner, J. (2014). Coral reef livelihoods. Current Opinion in Environmental Sustainability, 7, 65-71. https://doi.org/10.1016/j.cosust.2013.11.025
El-Naggar, H. A. (2020). Human impacts on coral reef ecosystem. In Natural resources management and biological sciences. IntechOpen. https://dx.doi.org/10.5772/intechopen.88841
Ferrario, F., Beck, M. W., Storlazzi, C. D., Micheli, F., Shepard, C. C., & Airoldi, L. (2014). The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nature Communications, 5(1), 1-9. https://doi.org/10.1038/ncomms4794
Gattuso, J. P., Magnan, A., Billé, R., Cheung, W. W., Howes, E. L., Joos, F., ... & Turley, C. (2015). Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science, 349(6243), aac4722. https://doi.org/10.1126/science.aac4722
Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H., & Pratchett, M. S. (2013). Recovery of an isolated coral reef system following severe disturbance. Science, 340(6128), 69-71. https://doi.org/10.1126/science.1232310
Hicks, C. C., & Cinner, J. E. (2014). Social, institutional, and knowledge mechanisms mediate diverse ecosystem service benefits from coral reefs. Proceedings of the National Academy of Sciences, 111(50), 17791-17796. https://doi.org/10.1073/pnas.1413473111
Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., Jackson, J. B., ... & Scheffer, M. (2017). Coral reefs in the Anthropocene. Nature, 546(7656), 82-90. https://doi.org/10.1038/nature22901
Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Dietzel, A., Eakin, C. M., ... & Torda, G. (2018). Global warming transforms coral reef assemblages. Nature, 556(7702), 492-496. https://doi.org/10.1038/s41586-019-1081-y
Javid, P., Behzadi, S., Farrokhi, N., Bakhtiarizadeh, M., Alavi, S.M., & Ranjbar, M.S. (2021). Evaluation of Hsp70 gene expression in response to heat shock in a species of stony coral Acropora downingi (Wallace, 1999). Journal of Aquatic Ecology, 11(1), 36-44. http://jae.hormozgan.ac.ir/article-1-936-en.html (in Persian)
Javid, P., Farrokhi, N., Behzadi, S., Bakhtiarizadeh, M., Alavi, S.M., & Ranjbar, M.S. (2020). Genetic Variation in Response to Global Warming in a Coral Reef Species, Porites lobata. Avicenna Journal of Environmental Health Engineering, 7(1), 29-34. https://doi.org/10.34172/ajehe.2020.05
Javid, P., Jahromi, M. S., & Ranjbar, M. S. (2018). The status of coral reefs in the Larak Island, Persian Gulf, from 2012 to 2018. International Journal of Veterinary and Animal Research, 1(3), 49-53. E-ISSN:2651-3609
Jeffries, K. M., Hinch, S. G., Sierocinski, T., Pavlidis, P., & Miller, K. M. (2014). Transcriptomic responses to high water temperature in two species of P acific salmon. Evolutionary Applications, 7(2), 286-300. https://doi.org/10.1111/eva.12119
Jia, S., Geng, X., Cai, Z., Wang, Y., Shen, J., Li, Y., ... & Wang, D. (2024). Comparison of physiological and transcriptome responses of corals to strong light and high temperature. Ecotoxicology and Environmental Safety, 273, 116143. https://doi.org/10.1016/j.ecoenv.2024.116143
Johnson, G. L., & Nakamura, K. (2007). The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1773(8), 1341-1348. https://doi.org/10.1016/j.bbamcr.2006.12.009
Kabiri, K., Pradhan, B., Rezai, H., Ghobadi, Y., & Moradi, M. (2012, December). Fluctuation of sea surface temperature in the Persian Gulf and its impact on coral reef communities around Kish Island. In 2012 IEEE Colloquium on Humanities, Science and Engineering (CHUSER) (pp. 164-167). IEEE. https://doi.org/10.1109/chuser.2012.6504303
Kämpf, J., & Sadrinasab, M. (2006). The circulation of the Persian Gulf: a numerical study. Ocean Science, 2(1), 27-41. https://doi.org/10.5194/os-2-27-2006
Kanehisa, M., & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27-30. https://doi.org/10.1093/nar/28.1.27
Kenkel, C. D., Meyer, E., & Matz, M. V. (2013). Gene expression under chronic heat stress in populations of the mustard hill coral (P orites astreoides) from different thermal environments. Molecular Ecology, 22(16), 4322-4334. https://doi.org/10.1111/mec.12390
Kirk, N. L., Howells, E. J., Abrego, D., Burt, J. A., & Meyer, E. (2018). Genomic and transcriptomic signals of thermal tolerance in heat‐tolerant corals (Platygyra daedalea) of the Arabian/Persian Gulf. Molecular Ecology, 27(24), 5180-5194. https://doi.org/10.1111/mec.14934
Konyuhov, A. I., & Maleki, B. (2006). The Persian Gulf Basin: Geological history, sedimentary formations, and petroleum potential. Lithology and Mineral Resources, 41, 344-361. https://doi.org/10.1134/s0024490206040055
Krüger, T. (2014). Symbiont diversity and coral bleaching: An antioxidant view on thermal stress (Doctoral dissertation, Open Access Te Herenga Waka-Victoria University of Wellington).
Lackie, R. E., Maciejewski, A., Ostapchenko, V. G., Marques-Lopes, J., Choy, W. Y., Duennwald, M. L., ... & Prado, M. A. (2017). The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Frontiers in Neuroscience, 11, 257764. https://doi.org/10.3389/fnins.2017.00254
Lesser, M. P. (2011). Coral bleaching: causes and mechanisms. In Coral reefs: an ecosystem in transition (pp. 405-419). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0114-4_23
Levin, R. A., Beltran, V. H., Hill, R., Kjelleberg, S., McDougald, D., Steinberg, P. D., & Van Oppen, M. J. (2016). Sex, scavengers, and chaperones: transcriptome secrets of divergent Symbiodinium thermal tolerances. Molecular Biology and Evolution, 33(9), 2201-2215. https://doi.org/10.1093/molbev/msw119
Logan, C. A., Dunne, J. P., Eakin, C. M., & Donner, S. D. (2014). Incorporating adaptive responses into future projections of coral bleaching. Global Change Biology, 20(1), 125-139. https://doi.org/10.1111/gcb.12390
Lough, J. M., Anderson, K. D., & Hughes, T. P. (2018). Increasing thermal stress for tropical coral reefs: 1871–2017. Scientific Reports, 8(1), 6079. https://doi.org/10.1038/s41598-018-24530-9
Määttänen, P., Gehring, K., Bergeron, J. J., & Thomas, D. Y. (2010, July). Protein quality control in the ER: the recognition of misfolded proteins. In Seminars in cell & developmental biology (Vol. 21, No. 5, pp. 500-511). Academic Press. https://doi.org/10.1016/j.semcdb.2010.03.006
Moghaddam, S., Shokri, M. R., & Tohidfar, M. (2021). The enhanced expression of heat stress-related genes in scleractinian coral ‘Porites harrisoni’during warm episodes as an intrinsic mechanism for adaptation in ‘the Persian Gulf’. Coral Reefs, 40(4), 1013-1028. https://doi.org/10.1007/s00338-021-02100-2
Mubarak, A. W., & Kubryakov, A. I. (2001). Hydrological structure of waters of the Persian Gulf according to the data of observations in 1992. Physical Oceanography, 11(5), 459-471. https://doi.org/10.1007/BF02509711
Nandi, A., Yan, L. J., Jana, C. K., & Das, N. (2019). Role of catalase in oxidative stress-and age-associated degenerative diseases. Oxidative Medicine and Cellular Longevity, 2019. https://doi.org/10.1155/2019/9613090
Nielsen, D. A., Petrou, K., & Gates, R. D. (2018). Coral bleaching from a single cell perspective. The ISME Journal, 12(6), 1558-1567. https://doi.org/10.1038/s41396-018-0080-6
Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N., & Bay, R. A. (2014). Mechanisms of reef coral resistance to future climate change. Science, 344(6186), 895-898. https://doi.org/10.1126/science.1251336
Park, C. J., & Seo, Y. S. (2015). Heat shock proteins: a review of the molecular chaperones for plant immunity. The Plant Pathology Journal, 31(4), 323. https://doi.org/10.5423/PPJ.RW.08.2015.0150
Petrou, K., Nunn, B. L., Padula, M. P., Miller, D. J., & Nielsen, D. A. (2021). Broad scale proteomic analysis of heat-destabilised symbiosis in the hard coral Acropora millepora. Scientific Reports, 11(1), 19061. https://doi.org/10.1038/s41598-021-98548-x
Reynolds, R. M. (1993). Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—Results from the Mt Mitchell expedition. Marine Pollution Bulletin, 27, 35-59. https://doi.org/10.1016/0025-326X(93)90007-7
Richier, S., Furla, P., Plantivaux, A., Merle, P. L., & Allemand, D. (2005). Symbiosis-induced adaptation to oxidative stress. Journal of Experimental Biology, 208(2), 277-285. https://doi.org/10.1242/jeb.01368
Riegl, B., Johnston, M., Purkis, S., Howells, E., Burt, J., Steiner, S. C., ... & Bauman, A. (2018). Population collapse dynamics in Acropora downingi, an Arabian/Persian Gulf ecosystem‐engineering coral, linked to rising temperature. Global Change Biology, 24(6), 2447-2462. https://doi.org/10.1111/gcb.14114
Riegl, B. M., Purkis, S. J., Al-Cibahy, A. S., Abdel-Moati, M. A., & Hoegh-Guldberg, O. (2011). Present limits to heat-adaptability in corals and population-level responses to climate extremes. PloS one, 6(9), e24802. https://doi.org/10.1371/journal.pone.0024802
Rosic, N., Kaniewska, P., Chan, C. K. K., Ling, E. Y. S., Edwards, D., Dove, S., & Hoegh-Guldberg, O. (2014). Early transcriptional changes in the reef-building coral Acropora aspera in response to thermal and nutrient stress. BMC Genomics, 15, 1-17. https://doi.org/10.1186/1471-2164-15-1052
Ruiz-Jones, L. J., & Palumbi, S. R. (2017). Tidal heat pulses on a reef trigger a fine-tuned transcriptional response in corals to maintain homeostasis. Science Advances, 3(3), e1601298. https://doi.org/10.1126/sciadv.1601298
Scandalios, J. G. (2002). Oxidative stress responses-what have genome-scale studies taught us? Genome Biology, 3, 1-6. https://doi.org/10.1186/gb-2002-3-7-reviews1019
Sharifinia, M., Daliri, M., & Kamrani, E. (2019). Estuaries and coastal zones in the northern Persian gulf (Iran). In Coasts and estuaries (pp. 57-68). Elsevier. https://doi.org/10.1016/B978-0-12-814003-1.00004-6
Sharp, V. A., Brown, B. E., & Miller, D. (1997). Heat shock protein (hsp 70) expression in the tropical reef coral Goniopora djiboutiensis. Journal of Thermal Biology, 22(1), 11-19. https://doi.org/10.1016/S0306-4565(96)00029-0
Shishodia, S. K., & Shankar, J. (2020). Exploration of mycelial proteins from Aspergillus terreus revealed ribosome biogenesis and antioxidant enzymes. Current Proteomics, 17(5), 433-445. https://doi.org/10.2174/1570164617666191004163734
Smith, E. G., Hume, B. C., Delaney, P., Wiedenmann, J., & Burt, J. A. (2017). Genetic structure of coral-Symbiodinium symbioses on the world’s warmest reefs. PloS one, 12(6), e0180169. https://doi.org/10.1371/journal.pone.0180169
Sheppard, C., Al-Husiani, M., Al-Jamali, F., Al-Yamani, F., Baldwin, R., Bishop, J., ... & Zainal, K. (2010). The Gulf: a young sea in decline. Marine Pollution Bulletin, 60(1), 13-38. https://doi.org/10.1016/j.marpolbul.2009.10.017
Spalding, M., Ravilious, C., & Green, E. P. (2001). World atlas of coral reefs. Univ of California Press. ISBN: 0-520-23255-0
Torti, F. M., & Torti, S. V. (2002). Regulation of ferritin genes and protein. Blood, the Journal of the American Society of Hematology, 99(10), 3505-3516. https://doi.org/10.1182/blood.V99.10.3505
Traylor-Knowles, N., Rose, N. H., Sheets, E. A., & Palumbi, S. R. (2017). Early transcriptional responses during heat stress in the coral Acropora hyacinthus. The Biological Bulletin, 232(2), 91-100. https://doi.org/10.1086/692717
Urban, M. C. (2015). Accelerating extinction risk from climate change. Science, 348(6234), 571-573. https://doi.org/10.1126/science.aaa4984
Wang, J. T., Wang, Y. T., Chen, C. A., Meng, P. J., Tew, K. S., Chiang, P. W., & Tang, S. L. (2022). Extra high superoxide dismutase in host tissue is associated with improving bleaching resistance in “thermal adapted” and Durusdinium trenchii-associating coral. PeerJ Life and Environment, 10, e12746. https://doi.org/10.7717/peerj.12746
Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J., & Graham, N. A. (2019). Coral reef ecosystem services in the Anthropocene. Functional Ecology, 33(6), 1023-1034. https://doi.org/10.1111/1365-2435.13331