تأثیر غلظت‌های مختلف لینولئیک اسید بر پاسخ‌های فیزیولوژیک و تولید ترکیبات زیست فعال در جلبک اسپیرولینا پلاتنسیس (Spirulina platensis)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زیست شناسی، دانشکده علوم پایه، دانشگاه آزاد اسلامی، واحد قائم شهر، قائم شهر، ایران

2 گروه زیست شناسی، دانشکده علوم پایه، دانشگاه آزاد اسلامی، واحد ساری، ساری، ایران

10.22091/ethc.2025.11770.1043

چکیده

هدف: جلبک اسپیرولینا (Spirulina platensis) یک منبع مهم از ترکیبات زیست فعال به خصوص رنگیزه‌های گیاهی و ترکیبات فنلی و آنتی اکسیدان ها است. در این بررسی، تأثیر لینولئیک اسید (30 و 60 میکرومولار) بر تغییرات ردوکس و بیوشیمیایی جلبک اسپیرولینا زمان‌های 3 و 7 روز مطالعه شد.
مواد و روش‌ها: در این بررسی، محتوای سوپراکسید آنیون، فعالیت آنزیم‌های کاتالاز و پراکسیداز و همچنین، میزان محتوای رنگیزه‌های فتوسنتزی، پرولین، آسکوربات، فنل و فلاوونوئید کل به روش اسپکتروفتومتری محاسبه شد.
نتایج: وزن خشک جلبک‌های تیمار شده با غلظت‌های مختلف لینولئیک اسید پس از 3 روز افزایش یافت. همچنین، محتوای سوپراکسید آنیون در غلظت 30 میکرومولار لینولئیک اسید بعد از 7 روز افزایش یافت. همچنین، تیمار لینولئیک اسید باعث کاهش فعالیت آنزیم‌های کاتالاز و پراکسیداز شد. همچنین این تیمار در غلظت 60 میکرومولار باعث افزایش محتوای کلروفیل کل، کلروفیل a، کلروفیل b و کاروتنوئیدها شد. محتوای پرولین و آسکوربیک اسید در پاسخ به غلظت‌های 30 و 60 میکرومولار لینولئیک اسید کاهش چشمگیری یافت. افزایش معنی‌داری در محتوای فنل و فلاوونوئید کل در پاسخ به لینولئیک اسید مشاهده شد که بیشترین محتوای فنل و فلاوونوئید کل در غلظت 60 میکرومولار پس از 7 روز مشاهده شد.
نتیجه‌گیری: می‌توان پیشنهاد کرد که لینولئیک اسید با تغییر محتوای سوپراکسید آنیون به عنوان یک مولکول علامت رسان می‌تواند پاسخ‌های بیوشیمیایی و متابولیکی را در جلبک اسپیرولینا تغییر دهد. 

کلیدواژه‌ها

موضوعات


محمدی الستی، فریبا؛ فدائی نوغانی، وجیهه؛ و خسروی دارانی، کیانوش (1395). تأثیر غلظت‌های مختلف جلبک اسپیرولینا پلاتنسیس بر برخی ویژگی‌های فیزیکی‌شیمیایی و حسی ماست اسفناج پروبیوتیک. پژوهش‌های صنایع غذایی، 26 (2)، 143-127.
Akkol, E. K., Göger, F., Koşar, M., & Başer, K. H. C. (2008). Phenolic composition and biological activities of Salvia halophila and Salvia virgata from Turkey. Food Chemistry108(3), 942-949.
AlFadhly, N. K., Alhelfi, N., Altemimi, A. B., Verma, D. K., Cacciola, F., & Narayanankutty, A. (2022). Trends and technological advancements in the possible food applications of Spirulina and their health benefits: A Review. Molecules27(17), 5584.
Anjum, N. A., Gill, S. S., Corpas, F. J., Ortega-Villasante, C., Hernandez, L. E., Tuteja, N., ... & Fujita, M. (2022). Recent insights into the double role of hydrogen peroxide in plants. Frontiers in Plant Science13, 843274.
Ali, S. K., & Saleh, A. M. (2012). Spirulina-an overview. International Journal of Pharmacy and Pharmaceutical Sciences4(3), 9-15.
Ambati, R. R., Phang, S. M., Ravi, S., & Aswathanarayana, R. G. (2014). Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Marine Drugs12(1), 128-152.
Ameri, M., Baron-Sola, A., Khavari-Nejad, R. A., Soltani, N., Najafi, F., Bagheri, A., ... & Hernández, L. E. (2020). Aluminium triggers oxidative stress and antioxidant response in the microalgae Scenedesmus sp. Journal of Plant Physiology246, 153114.
Andrade, L. M., Andrade, C. J., Dias, M., Nascimento, C., & Mendes, M. A. (2018). Chlorella and Spirulina microalgae as sources of functional foods. Nutraceuticals, and Food Supplements6(1), 45-58.
Anvar, A. A., & Nowruzi, B. (2021). Bioactive properties of spirulina: A review. Microbial Bioactechnology4, 134-142.
Bates, A. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205-207.
Benelhadj, S., Gharsallaoui, A., Degraeve, P., Attia, H., & Ghorbel, D. (2016). Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chemistry194, 1056-1063.
Bradford, M. M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem, 72, 248-254.
Cakmak, I., & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 98, 1222-1227.
Costa, J. A. V., Freitas, B. C. B., Rosa, G. M., Moraes, L., Morais, M. G., & Mitchell, B. G. (2019). Operational and economic aspects of Spirulina-based biorefinery. Bioresource Technology292, 121946.
de Pinto, M. C., Francis, D., & De Gara, L. (1999). The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma209, 90-97.
Deleu, M., Deboever, E., Nasir, M. N., Crowet, J. M., Dauchez, M., Ongena, M., ... & Lins, L. (2019). Linoleic and linolenic acid hydroperoxides interact differentially with biomimetic plant membranes in a lipid specific manner. Colloids and Surfaces B: Biointerfaces175, 384-391.
Dietz, K. J., Turkan, I., & Krieger-Liszkay, A. (2016). Redox-and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiology171(3), 1541-1550.
Elstner, E. F., & Heupel, A. (1976). Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Analytical Biochemistry, 70, 616-620.
Esmaeili, S., Sharifi, M., Ghanati, F., Soltani, B. M., Samari, E., & Sagharyan, M. (2023). Exogenous melatonin induces phenolic compounds production in Linum album cells by altering nitric oxide and salicylic acid. Scientific Reports13(1), 4158.
Eze, C. N., Onyejiaka, C. K., Ihim, S. A., Ayoka, T. O., Aduba, C. C., Nwaiwu, O., & Onyeaka, H. (2023). Bioactive compounds by microalgae and potentials for the management of some human disease conditions. AIMS Microbiology9(1), 55.
He, M., & Ding, N. Z. (2020). Plant unsaturated fatty acids: multiple roles in stress response. Frontiers in Plant Science11, 562785.
Hou, Q., Ufer, G., & Bartels, D. (2016). Lipid signalling in plant responses to abiotic stress. Plant, Cell & Environment39(5), 1029-1048.
Kachroo, A., & Kachroo, P. (2009). Fatty acid–derived signals in plant defense. Annual Review of Phytopathology47(1), 153-176.
Khalili, Z., Jalili, H., Noroozi, M., & Amrane, A. (2019). Effect of linoleic acid and methyl jasmonate on astaxanthin content of Scenedesmus acutus and Chlorella sorokiniana under heterotrophic cultivation and salt shock conditions. Journal of Applied Phycology31, 2811-2822.
Khalili, Z., Jalili, H., Noroozi, M., Amrane, A., & Ashtiani, F. R. (2020). Linoleic-acid-enhanced astaxanthin content of Chlorella sorokiniana (Chlorophyta) under normal and light shock conditions. Phycologia59(1), 54-62.
Khodamoradi, S., Sagharyan, M., Samari, E., & Sharifi, M. (2022). Changes in phenolic compounds production as a defensive mechanism against hydrogen sulfide pollution in Scrophularia striata. Plant Physiology and Biochemistry177, 23-31.
Kumar, A., Ramamoorthy, D., Verma, D. K., Kumar, A., Kumar, N., Kanak, K. R., ... & Mohan, K. (2022). Antioxidant and phytonutrient activities of Spirulina platensisEnergy Nexus6, 100070.
Kumar, A., Verma, D. K., Kumar, A., Kumar, N., & Ramamoorthy, D. (2019). Influence of Spirulina on food consumption and efficiency of Bombyx mori L. Bivoltive Hybrid race (CSR2 X CSR4). International Journal of Research and Analytical Reviews6(1), 722-740.
Kumar, M., Kulshreshtha, J., & Singh, G. P. (2011). Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature. Brazilian Journal of Microbiology42, 1128-1135.
Lichtenthaler, H. K., & Wellburn, A. R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11, 591-592.
Lim, G. H., Singhal, R., Kachroo, A., & Kachroo, P. (2017). Fatty acid–and lipid-mediated signaling in plant defense. Annual Review of Phytopathology55(1), 505-536.
Liu, J., Mao, X., Zhou, W., & Guarnieri, M. T. (2016). Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella zofingiensisBioresource Technology214, 319-327.
Marles, R. J., Barrett, M. L., Barnes, J., Chavez, M. L., Gardiner, P., Ko, R., ... & Griffiths, J. (2011). United States pharmacopeia safety evaluation of SpirulinaCritical Reviews in Food Science and Nutrition51(7), 593-604.
Mohammadi Alasti, F., Fadei Noghani, V., & Khosravi Darani, K. (2015). Influence of different concentrations of Spirulina platensis on some physicochemical and sensory properties of probiotic spinach yoghurt. Food Industry Research, 26(2), 127-143. (in persian)
Niu, X. D., Li, G. R., Kang, Z. H., Huang, J. L., & Wang, G. X. (2012). Photosynthetic characteristics and antioxidant enzyme system in high-chlorophyll rice Gc mutant. Russian Journal of Plant Physiology59, 691-695.
Paliwal, C., Mitra, M., Bhayani, K., Bharadwaj, S. V., Ghosh, T., Dubey, S., & Mishra, S. (2017). Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology244, 1216-1226.
Pancha, I., Chokshi, K., Maurya, R., Trivedi, K., Patidar, S. K., Ghosh, A., & Mishra, S. (2015). Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology189, 341-348.
Pandolfini, T., Gabbrielli, R., & Comparini, C. (1992). Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell and Environment, 15, 719-725.
Patel, A. K., Albarico, F. P. J. B., Perumal, P. K., Vadrale, A. P., Nian, C. T., Chau, H. T. B., ... & Singhania, R. R. (2022). Algae as an emerging source of bioactive pigments. Bioresource Technology351, 126910.
Pietryczuk, A., Biziewska, I., Imierska, M., & Czerpak, R. (2014). Influence of traumatic acid on growth and metabolism of Chlorella vulgaris under conditions of salt stress. Plant Growth Regulation73, 103-110.
Qian, H., Xu, J., Lu, T., Zhang, Q., Qu, Q., Yang, Z., & Pan, X. (2018). Responses of unicellular alga Chlorella pyrenoidosa to allelochemical linoleic acid. Science of the Total Environment625, 1415-1422.
Rahim, A., Çakir, C., Ozturk, M., Şahin, B., Soulaimani, A., Sibaoueih, M., ... & El Amiri, B. (2021). Chemical characterization and nutritional value of Spirulina platensis cultivated in natural conditions of Chichaoua region (Morocco). South African Journal of Botany141, 235-242.
Ran, W., Wang, H., Liu, Y., Qi, M., Xiang, Q., Yao, C., ... & Lan, X. (2019). Storage of starch and lipids in microalgae: Biosynthesis and manipulation by nutrients. Bioresource Technology291, 121894.
Randrianarison, G., & Ashraf, M. A. (2017). Microalgae: a potential plant for energy production. Geology, Ecology, and Landscapes1(2), 104-120.
Rosario, J. C., & Josephine, R. M. (2015). Mineral profile of edible algae Spirulina platensisInternational Journal of Current Microbiology and Applied Sciences4(1), 478-483.
Sagharyan, M., & Sharifi, M. (2024). Metabolic and physiological changes induced by exogenous phenylalanine in Linum album Cells. Journal of Plant Growth Regulation, 43, 2785-2801.
Sagharyan, M., Sharifi, M., & Samari, E. (2023). Methyl jasmonate redirects the dynamics of carbohydrates and amino acids toward the lignans accumulation in Linum album cells. Plant Physiology and Biochemistry198, 107677.
Shinde, S., Villamor, J. G., Lin, W., Sharma, S., & Verslues, P. E. (2016). Proline coordination with fatty acid synthesis and redox metabolism of chloroplast and mitochondria. Plant Physiology172(2), 1074-1088.
Sagharyan, M., Sharifi, M., Samari, E., & Karimi, F. (2024). Changes in MicroRNAs expression mediate molecular mechanism underlying the effect of MeJA on the biosynthesis of podophyllotoxin in Linum album cells. Scientific Reports14(1), 30738.
Saxena, I., Srikanth, S., & Chen, Z. (2016). Cross talk between H2O2 and interacting signal molecules under plant stress response. Frontiers in Plant Science7, 570.
Solovchenko, A. E. (2013). Physiology and adaptive significance of secondary carotenogenesis in green microalgae. Russian Journal of Plant Physiology60, 1-13.
Tashackori, H., Sharifi, M., Ahmadian Chashmi, N., Behmanesh, M., Safaie, N., & Sagharyan, M. (2021). Physiological, biochemical, and molecular responses of Linum album to digested cell wall of Piriformospora indica. Physiology and Molecular Biology of Plants27, 2695-2708.
Trotta, T., Porro, C., Cianciulli, A., & Panaro, M. A. (2022). Beneficial effects of spirulina consumption on brain health. Nutrients14(3), 676.
Ugya, A. Y., Imam, T. S., Li, A., Ma, J., & Hua, X. (2020). Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: a mini review. Chemistry and Ecology, 36(2), 174-193.
Upchurch, R. G. (2008). Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnology Letters30, 967-977.
Wang, C., Wang, R., Hu, L., Xi, M., Wang, M., Ma, Y., ... & Gao, P. (2023). Metabolites and metabolic pathways associated with allelochemical effects of linoleic acid on Karenia mikimotoiJournal of Hazardous Materials447, 130815.
Wang, X. Q., Li, L. N., Chang, W. R., Zhang, J. P., Gui, L. L., Guo, B. J., & Liang, D. C. (2001). Structure of C-phycocyanin from Spirulina platensis at 2.2 Å resolution: a novel monoclinic crystal form for phycobiliproteins in phycobilisomes. Acta Crystallographica Section D: Biological Crystallography57(6), 784-792.
Xu, S., Yang, S. Q., Yang, Y. J., Xu, J. Z., Shi, J. Q., & Wu, Z. X. (2017). Influence of linoleic acid on growth, oxidative stress and photosynthesis of the cyanobacterium Cylindrospermopsis raciborskiiNew Zealand Journal of Marine and Freshwater Research51(2), 223-236.
Zarrouk, C. (1966). Contribution a l'etude d'une Cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina mixima Geitler. (Doctoral dissertation, University of Paris, France).
Zeeshan, M., & Prasad, S. M. (2009). Differential response of growth, photosynthesis, antioxidant enzymes and lipid peroxidation to UV-B radiation in three cyanobacteria. South African Journal of Botany75(3), 466-474.
Zhao, J. (2015). Phospholipase D and phosphatidic acid in plant defence response: from protein–protein and lipid–protein interactions to hormone signalling. Journal of Experimental Botany66(7), 1721-1736.